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Abstract
We consider a path integral in the phase space possibly with an influence
functional in it and we use a method based on the use of the central limit
theorem on the phase of the path integral representation to extract an equivalent
expression which can be used in numerical calculations. Moreover we give
conditions under which we can extract closed analytical results. As a specific
application we consider a general system of two coupled and forced harmonic
oscillators with coupling of the form x1x

α
2 and we derive the relevant sign

solved propagator.

PACS numbers: 03.65.Db, 02.70.Ss

1. Introduction

Path integral methods appear in various areas of physics including quantum mechanics,
quantum field theory and polymer physics. They constitute a powerful and elegant method
of treatment although their mathematical foundation constitutes a large, complex and difficult
topic [1].

In the present paper, we intend to give methods based on the use of the central limit theorem
[2, 3] in the phase of the path integral expressions to handle path integral expressions in real
time and derive expressions free from the sign problem [4], a central problem appearing in the
real-time Monte Carlo integration [5]. The sign problem is due to a phase or sign appearing in
the quantum Monte Carlo expression, which changes in a periodic way. Therefore the terms
of different sign cancel each other and the Monte Carlo error increases. The present result
appears free of the sign problem.

Further we give conditions to extract exact closed analytical expressions for the
propagators. The evaluated propagators are called ‘sign solved propagators’ (SSP) due to
the origin [4] of the present method. We note that they satisfy the semigroup property but
they are not directly related to the zeta function due to the presence of a delta function (see the
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theorem at the end of section 2). In fact knowledge of the zeta function requires knowledge
of the eigenvalues of the whole system, something that cannot be extracted via the present
formalism.

Previously we have considered [6] a model involving an atom in an over-damped cavity
and after deriving its influence functional we have studied its internal dynamics by applying to
that influence functional methods similar to those developed in the present paper. In another
publication [7] we developed a path integral model for the study of the interaction of atoms
with ultra short laser pulses and derived expressions from which the exact SSP can be extracted
as the number of the time slices tends to infinity.

We note that coherent spaces constitute another area of application of the combined use
of path integral methods with the central limit theorem [8]. We have not used the naming sign
solved propagator in the main body of [8].

Here as an application of the present theory we consider the case of two coupled and
driven harmonic oscillators of time-dependent frequencies as well as masses and coupling of
the form x1x

α
2 and derive the corresponding SSP.

The present paper proceeds as follows. In section 2, we present the theory and the
major results of the application of the central limit theorem in the phase of the path integral
expression. In section 3, we present an application of two time-dependent coupled and driven
harmonic oscillators. We derive the corresponding SSP and finally we make more specific
calculations of the SSP in the case of two coupled and forced oscillators with damping. Finally,
in section 4 we present our conclusions.

2. Central limit theorem and path integral expressions

The central aim of the present section is to prove the theorem appearing at the end of the present
section. Before proceeding with the computation of path integrals of interacting systems it is
instructive to consider the path integral

K(rf , ri; t) =
∫ ∫

Dr
Dp

2π
exp

[
i
∫ t

0
dτ(p(τ)ṙ(τ ) − H(p, r, τ ))

]
. (1)

After the theorem of equations (15) we will introduce an influence functional in it. To proceed
we consider its discrete expression of N + 1 time slices

K(N)(rf , ri; t) =
N∏

n=1

[∫
drn

] N+1∏
n=1

[∫
dpn

2π

]
exp

{
i

N+1∑
n=1

[pn(rn − rn−1) − εH(pn, rn, tn)]

}
,

(2)

where

ε = t

N + 1
, (3a)

tn = nε. (3b)

We set r0 = ri and rN+1 = rf . In the present development, we generally consider the
Hamiltonian H to have the form

H(p, r, t) = p2

2M
+ V (r, t). (4)

Now we proceed by considering from the theoretical point of view the application of the
Monte Carlo theorem to the expression (2). At first we note that from the probabilistic point
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of view the configuration space variables are statistically independent, arbitrary and moreover
equivalent if we use the same sampling distribution of the random variable Xr for all of them.
The same is valid for the variables of the momentum group supposing the same sampling
distribution of the random variable Xp for all of them as well. Further we assume that
the random variables Xr and Xp are statistically independent. Consequently, their mutual
covariance matrices are going to be zero and the covariance matrix of the multidimensional
phase-space sampling distribution is going to have elements σ rr

ij = σ 2
r δij , σ

pp

kl = σ 2
pδkl and

σ
rp

ik = σ
pr

ki = 0 where the lower indices i, j correspond to the configuration space variables
while the lower indices k, l correspond to the momentum space variables. Moreover the
upper index r corresponds to the random variable Xr and the upper index p to the random
variable Xp. σ 2

r is the variance corresponding to each of the one-dimensional equivalent
configuration space sampling distributions and σ 2

p is the variance corresponding to each of the
one-dimensional equivalent momentum space sampling distributions. δij is the Kronecker’s
symbol.

Now according to the central limit theorem [2] the following convergence in distribution
applies:

√
N + 1

[(
1

N + 1

∑
n

[
t

p2
n

2M

tV (rn, tn)

])
−

[
t
〈

p2

2M

〉
t〈V (t)〉

]]
D−→ Z. (5)

For the time-dependent potential the mean value expression is given as

〈V (t)〉 = 1

N + 1

N+1∑
n=1

〈V (rn, tn)〉. (6)

In each term on the right-hand side of equation (6) the expectation value is taken with respect
to the configuration space sampling distribution.

The continuous Gaussian random variable Z is defined on a space composed of N + 1
copies of the phase space. Each vector on the left of equation (5) depends diagonally on the
variables of just one of those copies. Z obeys a normal probability density with mean zero
and diagonal covariance matrix

↔
� = ↔

�2 ⊗ IN+1, (7a)

where
↔
�2 =

(
t2σ 2

m 0
0 t2σ 2

V (t)

)
. (7b)

IN+1 is the N + 1-dimensional unit matrix and moreover on the one hand

σ 2
m = Cov

(
p2

2M
,

p2

2M

)
, (7c)

where the covariance is calculated with respect to the momentum space sampling distribution,
and on the other upon taking into account definition (6) we have set

σ 2
V (t) =

∑N+1
n=1 〈(V (rn, tn) − 〈V (t)〉)2〉

N + 1
, (7d)

where the expectation values are calculated with respect to the configuration space sampling
distribution.

We note that in order to write the covariance matrix (7b) we have taken into account the
fact that the random variables Xr and Xp and their corresponding functions are statistically
independent.
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Therefore the distribution density of the random variable Z in equation (5) is given by the
expression

fZ(�x) = 1

(2π)N+1

√
det(

↔
�)

exp

[
−�x 1

2
↔
�

�xT

]
, (8)

where �x = (p1, p2, . . . , pN, pN+1, r1, r2, . . . , rN , rN+1).
We note that in equation (5) we have a sum of functions of independently distributed

random vectors. Then for integrable functions with respect to the time their domain of
attraction [9], according to an application of Lyapunov’s theorem, is Gaussian and the above
convergence in distribution applies.

Further according to a corollary of the Cramer’s theorem [2] if we consider a function
F(x, y) then the following convergence in distribution applies:

√
N + 1

[
F

(
t

N + 1

∑
n

p2
n

2M
,

t

N + 1

∑
n

V (rn, tn)

)
− F

(
t

〈
p2

2M

〉
, t〈V (t)〉

)]
D−→ X, (9)

where the continuous Gaussian random variable X is defined on a space composed of N + 1
copies of the phase space. Each vector on the left of equation (9) depends diagonally on the
variables of just one of those copies. X obeys a normal probability density with mean zero
and diagonal covariance matrix[

F ′
x

(
t

〈
p2

2M

〉
, t〈V (t)〉

)
F ′

y

(
t

〈
p2

2M

〉
, t〈V (t)〉

)]
↔
�2

[
F ′

x

(
t
〈

p2

2M

〉
, t〈V (t)〉)

F ′
y

(
t
〈

p2

2M

〉
, t〈V (t)〉)

]
⊗ IN+1. (10)

Its corresponding distribution is given by a similar expression as in equation (8) but with the
covariance matrix (10). Note that another way of looking at the above distributions is as
products of one-dimensional distributions.

On considering the functions F(x, y) = cos(x + y), F(x, y) = sin(x + y) and upon
applying the above corollary of Cramer’s theorem we obtain the following convergence in
distribution:

√
N + 1

[
exp

(
−i

t

N + 1

∑
n

(
p2

n

2M
+ V (rn, tn)

))
− exp (−it〈H(t)〉)

]
D−→ Y − iW, (11)

where

〈H(t)〉 =
〈

p2

2M

〉
+ 〈V (t)〉. (12a)

The continuous Gaussian Y, W random variables are defined on a space composed of N + 1
copies of the phase space. Each vector on the left-hand side of equation (11) depends diagonally
on the variables of just one of those copies. Y, W obey normal probability densities with
mean zero and respectively diagonal covariance matrices

[sin(t〈H(t)〉) sin(t〈H(t)〉)] ↔
�2

[
sin(t〈H(t)〉)
sin(t〈H(t)〉)

]
⊗ IN+1 (12b)

and

[cos(t〈H(t)〉) cos(t〈H(t)〉)] ↔
�2

[
cos(t〈H(t)〉)
cos(t〈H(t)〉)

]
⊗ IN+1. (12c)

4
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Now we can write the discrete expression

K(N)(rf , ri; t) = (ρ2 − ρ1)
N

MN
1 MN

2

(q2 − q1)
N+1

(2πL1L2)
N+1

×
M1∑

i11=1

. . .

M1∑
i1n=1

. . .

M1∑
i1N=1

L1∑
j11=1

. . .

L1∑
j1n=1

. . .

L1∑
j1N+1=1

exp

{
i

N+1∑
n=1

[pj1n
(ri1n

− ri1n−1)]

}

×
(

M2∑
i21=1

. . .

M2∑
i2n=1

. . .

M2∑
i2N=1

L2∑
j21=1

. . .

L2∑
j2n=1

. . .

L2∑
j2N+1=1

× exp

{
−i

t

N + 1

N+1∑
n=1

H(pj2n
, ri2n

, tn)

})
i11,...,i1N ,j11,...,j1N+1

, (13)

where we have restricted the limits of the integration in configuration space between ρ1 and
ρ2, and those of the integration in the momentum space between q1 and q2 but in fact they can
be infinite. The j sums correspond to the momentum variables while the i sums correspond
to the position variables. Moreover the group of i and j sums with index 2 corresponds to a
certain small volume of phase space and the group of i and j sums with index 1 gather those
small volumes. M1 + 1 is the number of the partition points in each configuration space axis
for which we get those small volumes and M2 + 1 is the number of the partition points in each
configuration space axis in those small volumes. L1 + 1 is the number of the partition points
in each momentum space axis for which we get those small volumes and L2 + 1 is the number
of the partition points in each momentum space axis in those small volumes. Therefore, if
we apply the mean value theorem to those phase-space small volumes and let them shrink to
points we recover the initial path integral.

To proceed we use Portmanteau’s theorem [9] on equation (11) and therefore switch to
integral relations on the small volumes of phase space with index 2 in equation (13). Then
we gather those small volumes and transform back from equation (13) to equation (2) by
shrinking the small volumes to points to obtain the following form:

K(N)(rf , ri; t) =
N∏

n=1

[∫
drn

] N+1∏
n=1

[∫
dpn

2π

]
exp

{
i

N+1∑
n=1

[pn(rn − rn−1)]

}
exp(−it 〈H(t)〉)

+
1√

N + 1

N∏
n=1

[∫
drn

] N+1∏
n=1

[∫
dpn

2π

]
exp

{
i

N+1∑
n=1

[pn(rn − rn−1)]

}

×
{

N+1∏
n=1

[f1(pn, rn)] − i
N+1∏
n=1

[g1(pn, rn)]

}
, (14a)

where since the covariance matrices (12b) and (12c) are diagonal as we can easily check,
we have set the Gaussian distributions of the random variables Y and W , as products of the
functions

f1(pn, rn) = 1

2πσmσV (t)t2 sin2 (t 〈H(t)〉)
× exp

{
− p2

n

2σ 2
mt2 sin2 (t 〈H(t)〉) − r2

n

2σ 2
V (t)t2 sin2 (t 〈H(t)〉)

}
(14b)

5
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and

g1(pn, rn) = 1

2πσmσV (t)t2 cos2 (t 〈H(t)〉)
× exp

{
− p2

n

2σ 2
mt2 cos2 (t 〈H(t)〉) − r2

n

2σ 2
V (t)t2 cos2 (t 〈H(t)〉)

}
(14c)

respectively. The mean values and the variances are calculated with respect to appropriate
sampling functions for the momentum and the position relevant with the specific system
studied.

Then on performing the integrations over all the pn variables and the rn variables on the
first term in equation (14a) we obtain the theorem of the solution of the sign problem for
equation (1), according to which the following expressions are equal as N → ∞:

K(N)(rf , ri; t) =
N∏

n=1

[∫
drn

] N+1∏
n=1

[∫
dpn

2π

]
exp

{
i

N+1∑
n=1

[pn(rn − rn−1) − εH(pn, rn, tn)]

}

∼= δ(rf − ri) exp(−it〈H(t)〉) +
1√

N + 1

N∏
n=1

[∫
drn

]

×
{

N+1∏
n=1

[f (rn, rn−1)] − i
N+1∏
n=1

[g(rn, rn−1)]

}
, (15a)

where

f (rn, rn−1) = 1

2π
√

2πσV (t)t sin (t 〈H(t)〉)
× exp

{
−1

2
σ 2

mt2 sin2(t〈H(t)〉)(rn − rn−1)
2 − r2

n

2σ 2
V (t)t2 sin2(t〈H(t)〉)

}
(15b)

and

g(rn, rn−1) = 1

2π
√

2πσV (t)t cos (t 〈H(t)〉)
× exp

{
−1

2
σ 2

mt2 cos2(t〈H(t)〉)(rn − rn−1)
2 − r2

n

2σ 2
V (t)t2 cos2(t〈H(t)〉)

}
.

(15c)

Now we consider interacting systems. Therefore we can consider the double phase-space path
integral

Kc(xf , xi; rf , ri; t) =
∫ ∫ ∫ ∫

Dr
Dp

2π
Dx

Dpx

2π

× exp

[
i
∫ t

0
dτ

(
p(τ)ṙ(τ ) + px(τ)ẋ(τ ) − H(p, r, τ )

−Hx(px, x, τ ) − HI(r, x, τ )

)]

=
∫ ∫

Dr
Dp

2π
hxf ,xi ,t (r(τ )) exp

[
i
∫ t

0
dτ (p(τ)ṙ(τ ) − H(p, r, τ ))

]
, (16a)

where we have assumed ordinary path integrability over the x, px variables and we have set

hxf ,xi ,t (r(τ )) =
∫ ∫

Dx
Dpx

2π
exp

[
i
∫ t

0
dτ (px(τ )ẋ(τ ) − Hx(px, x, τ ) − HI(r, x, τ ))

]
.

(16b)

6
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To proceed we can write the following expression which is similar to equation (13) and
consider the same definitions as those appearing below equation (13):

K(N)
c (rf , ri; t) = (ρ2 − ρ1)

N

MN
1 MN

2

(q2 − q1)
N+1

(2πL1L2)
N+1

M1∑
i11=1

. . .

M1∑
i1n=1

. . .

M1∑
i1N=1

L1∑
j11=1

. . .

L1∑
j1n=1

. . .

L1∑
j1N+1=1

× exp

{
i

N+1∑
n=1

[
pj1n

(
ri1n

− ri1n−1

)]}
h(ri, ri11 , ri12 , . . . , ri1N

, rf )

×
(

M2∑
i21=1

. . .

M2∑
i2n=1

. . .

M2∑
i2N=1

L2∑
j21=1

. . .

L2∑
j2n=1

. . .

L2∑
j2N+1=1

× exp

{
−i

t

N + 1

N+1∑
n=1

H(pj2n
, ri2n

, tn)

})
i11,...,i1N ,j11,...,j1N+1

. (17)

The only difference with equation (13) is the presence of the influence functional h. We follow
the same discussion as in equations (5)–(14) and finally we use Portmanteau’s theorem [9] on
equation (11). Therefore we switch to integral relations on the small volumes of phase space
with index 2 in equation (17). Then we transform back from equation (17) to the discrete
form of equation (16a). So after the same manipulations which led from equation (14a) to
equation (15a), we obtain the following final theorem of the solution of the sign problem for
equation (16a), according to which the following expressions are equal as N → ∞:

K(N)
c (rf , ri; t) =

N∏
n=1

[∫
drn

] N+1∏
n=1

[∫
dpn

2π

]
h(ri, r1, r2, . . . , rN , rf )

× exp

{
i

N+1∑
n=1

[pn(rn − rn−1) − εH(pn, rn, tn)]

}
∼= h(rf , rf , rf , . . . , rf , rf )δ(rf − ri) exp(−it〈H(t)〉)

+
1√

N + 1

N∏
n=1

[∫
drn

]
h(ri, r1, r2, . . . , rN , rf )

×
{

N+1∏
n=1

[f (rn, rn−1)] − i

N+1∏
n=1

[g(rn, rn−1)]

}
. (18)

Now we intend to prove that under appropriate conditions (see equation (27)) only the first
term involving the delta function in equation (18) can give the exact result as N → ∞. In that
case we call that term sign solved propagator (SSP). To prove that, we intend to diagonalize
and integrate the Gaussian products

∏N+1
n=1 [f (rn, rn−1)] and

∏N+1
n=1 [g(rn, rn−1)] under certain

conditions for the h function in equation (18). To proceed we suppose that we intend to find
the transition amplitude between the initial state 	i(r) and the final one 	f (r). Moreover
to manage to find the eigenvalues of the quadratic forms in the Gaussian products and relate
them to the roots of the Chebyshev polynomials of the second kind, we perform on the terms
composed of the f functions the change of variables

rn → rn

γs(t)
(19a)

7
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and similarly we perform the change of variables

rn → rn

γc(t)
(19b)

on the terms composed of the g functions.
We have set

γ{ s
c }(t) =

σmt
{

sin(t〈H(t)〉)
cos(t〈H(t)〉)

}
√

2
. (19c)

Then upon taking into account the integration between the initial state 	i(ri) and the final one
	f (rf ), the last term on the right-hand side of equation (18), involving the f and g functions,
takes the form

℘ = 1√
N + 1

N+1∏
n=0

[∫
drn

]
	i

(
ri

γs(t)

)
	∗

f

(
rf

γs(t)

)

×h

(
ri

γs(t)
,

r1

γs(t)
,

r2

γs(t)
, . . . ,

rN

γs(t)
,

rf

γs(t)

)

× 2
N+2

2

[2π ]N+1[
√

2πσV (t)]N+1σN+2
m [t sin(t〈H(t)〉)]2N+3

× exp
{
r2
i + r2

f + �ρ1
↔
MN+2(βs(t))�ρT

1

}
− i

1√
N + 1

N+1∏
n=0

[∫
drn

]
	i

(
ri

γc(t)

)
	∗

f

(
rf

γc(t)

)

×h

(
ri

γc(t)
,

r1

γc(t)
,

r2

γc(t)
, . . . ,

rN

γc(t)
,

rf

γc(t)

)

× 2
N+2

2

[2π ]N+1[
√

2πσV (t)]N+1σN+2
m [t cos(t〈H(t)〉)]2N+3

× exp
{
r2
i + r2

f + �ρ1
↔
MN+2(βc(t))�ρT

1

}
, (20a)

where

�ρ1 = (ri, r1, . . . rN , rf ), (20b)

β{ s
c }(t) = −2 − 1

σ 2
mσ 2

V (t)t4
{

sin4(t〈H(t)〉)
cos4(t〈H(t)〉)

} . (20c)

Moreover the matrices on the exponents in equation (20a) correspond to the symmetric
matrices

↔
M0(β) = 1 (21a)

↔
M1(β) = [β] (21b)

↔
M2(β) =

[
β 1
1 β

]
(21c)

and generally

(
↔
MN+2(β))ij =

⎧⎨
⎩

1 if i = j ± 1
β if i = j

0 otherwise.
(21d)

8
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Their determinates satisfy the recurrence relation

det(
↔
MN+1(β)) = β det(

↔
MN(β)) − det(

↔
MN−1(β)), (22a)

and therefore [10] if UN+2(x) is a Chebyshev polynomial of the second kind of order N + 2,
then

det(
↔
MN+2(β)) = UN+2

(
β

2

)
. (22b)

So we easily conclude that the eigenvalues λ of the matrix
↔
MN+2(β) of order N + 2 can be

calculated from the N + 2 solutions of the equation

UN+2

(
β − λ

2

)
= 0 (23)

More particularly let the numbers ξ
∗(n)
N+2, n = 0, . . . , N + 1, be the roots of the equation

UN+2(x) = 0. They are simple, real roots and ξ
∗(n)
N+2 ∈ (−1, 1), n = 0, . . . , N + 1. Then the

eigenvalues of the matrices
↔
MN+2 (βc(t)) and

↔
MN+2 (βs(t)) are going to be given respectively

by the expressions

λ
∗(N+2)

{ s
c }n = −2ξ

∗(n)
N+2 + β{ s

c } (t) . (24)

Moreover the diagonal quadratic form corresponding to the term r2
i + r2

f on the exponents
in equation (20a) can be diagonalized simultaneously with each one of the quadratic forms

corresponding to the matrices
↔
MN+2 (βc(t)) and

↔
MN+2 (βs(t)) and we finally conclude that the

eigenvalues of the full quadratic forms on the exponents in equation (20a) are going to have
the form

λ
(N+2)

{ s
c }n = −2ξ

(n)

{ s
c }N+2

+ β{ s
c }(t), (25)

where

ξ
(n)

{ s
c }N+2

= ξ
∗(n)
N+2 + σ

(n)

{ s
c }N+2

(26)

and σ
(n)
cN+2, σ

(n)
sN+2 are appropriate non-negative real numbers.

To proceed further we have to make certain assumptions on the function h in
equation (20a). For instance, in the application of [6] the h function is composed of a
product of a certain bounded combination of error functions. Therefore it is reasonable to
assume the condition∣∣∣∣h

(
ri

γ (t)
,

r1

γ (t)
,

r2

γ (t)
, . . . ,

rN

γ (t)
,

rf

γ (t)

)∣∣∣∣ � b(N + 1)γ1CN+2 b, C > 0, γ1 ∈ R,

(27)

where γ (t) = γc(t) or γ (t) = γs(t).
Then if the range of the rn variables is from −∞ to ∞ we obtain the following upper

bound of the expression ℘ in equation (20a):

|℘| � bb12π
√

2πσV (t) |t sin (t 〈H(t)〉)|
⎧⎨
⎩ (N + 1)γ1

√
N + 1

N+1∏
n=0

⎡
⎣ C

2π

√
�

(N+2)
sn

⎤
⎦

⎫⎬
⎭

+ bb22π
√

2πσV (t)|t cos(t〈H(t)〉)|
⎧⎨
⎩ (N + 1)γ1

√
N + 1

N+1∏
n=0

⎡
⎣ C

2π

√
�

(N+2)
cn

⎤
⎦

⎫⎬
⎭ , (28a)

9



J. Phys. A: Math. Theor. 41 (2008) 205202 E G Thrapsaniotis

where

�
(N+2)

{ s
c }n = 1 + 2

(
1 + ξ

(n)

{ s
c }N+2

)
σ 2

mσ 2
V (t)t4

{
sin4(t〈H(t)〉)
cos4(t〈H(t)〉)

}
. (28b)

The constants b1, b2 depend on the form of the initial and final wavefunctions 	i(r) and
	f (r).

Therefore if the expressions in the curly brackets in equation (28a) tend to zero as N → ∞,
then the first term in equation (18) is exact as N → ∞ and corresponds to the sign solved
propagator. In conclusion we have proven the sign solved propagator theorem according to
which if equations (16a) and (16b) as well as equation (27) are valid and moreover

lim
N→∞

⎧⎨
⎩ (N + 1)γ1

√
N + 1

N+1∏
n=0

⎡
⎣ C

2π

√
�

(N+2)
sn

⎤
⎦

⎫⎬
⎭ = lim

N→∞

⎧⎨
⎩ (N + 1)γ1

√
N + 1

N+1∏
n=0

⎡
⎣ C

2π

√
�

(N+2)
cn

⎤
⎦

⎫⎬
⎭ = 0,

(29a)

then

Kc(xf , xi; rf , ri; t) = δ(rf − ri) exp(−it〈H(t)〉) lim
N→∞

hxf ,xi ,t (rf , rf , rf , . . . , rf , rf︸ ︷︷ ︸
N+2

). (29b)

Expressions (29a) are valid if C < 2π , since �
(N+2)

{ s
c }n � 1 (see equation (28b)).

3. Application to two coupled and forced harmonic oscillators

Let us consider the following Hamiltonian of two coupled and forced harmonic oscillators of
time-dependent frequencies and masses and coupling of the form x1x

α
2 ,

H(t) =
2∑

j=1

[
p2

j

2mj(t)
+

1

2
mj(t)ω

2
j (t)x

2
j − mj(t)fj (t)xj

]
− λ(t)x1x

α
2 . (30)

We intend to evaluate its sign solved propagator (SSP).
As a first step we perform the linear transformation

xi = Qi√
mi(t)

, i = 1, 2 (31a)

pi =
√

mi(t)

[
Pi − ṁi(t)

2
√

mi(t)
xi

]
, i = 1, 2, (31b)

which is canonical as it preserves the Poisson brackets [11]. Then we obtain the free of mass
terms Hamiltonian

H0(t) =
2∑

j=1

[
P 2

j

2
+

1

2
�2

j (t)Q
2
j − Fj (t)Qj

]
− �(t)Q1Q

α
2 , (32a)

where

�2
i (t) =

[
ω2

i (t) +
1

4

(
ṁ2

i (t)

m2
i (t)

− 2
m̈i(t)

mi(t)

)]
i = 1, 2 (32b)

Fi(t) =
√

mi(t)fi(t) i = 1, 2 (32c)

�(t) = λ(t)√
m1(t)m

α
2 (t)

. (32d)

10
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If K(x1f , x2f , tf ; x1i , x2i , ti) is the propagator corresponding to the Hamiltonian (30) and
K0(Q1f ,Q2f , tf ;Q1i ,Q2i , ti) is the one corresponding to the Hamiltonian (32a) then they
are related up to a surface factor [11] since the Hamiltonian (32a) has appeared from the
Hamiltonian (30) under a canonical transformation. Moreover canonical transformations
preserve the volume element [11] in phase space. Therefore we easily find the relation

K(x1f , x2f , tf ; x1i , x2i , ti) =
2∏

j=1

[mj(tf )mj (ti)]
1
4 exp

[
− i

4

(
ṁj (tf )x2

jf − ṁj (ti)x
2
ji

)]
×K0(Q1f ,Q2f , tf ;Q1i ,Q2i , ti ). (33)

Therefore we can concentrate our attention on the propagator of the Hamiltonian (32a). The
SSP can be evaluated via ordinary path integration over the variables 1 and then by application
of the theory of section 2. To proceed towards the first integration we intend to perform a
canonical transformation, followed by a time transformation, defined as

Q1 = Xρ(t) (34a)

P1 = P

ρ(t)
(34b)

ds

dt
= ρ−2(t). (34c)

It is canonical since it preserves the Poisson brackets and therefore it preserves the
volume element in phase space [11]. As the present transformation involves the generic
time redefinition (34c) we give more details. The N + 1 time slices discrete form of
K0(Q1f ,Q2f , tf ;Q1i ,Q2i , ti) involves the times tn = ti + nε, n = 0, 1, . . . , N + 1, where
the time step is ε = tf −ti

N+1 . Now on integrating the path integral expression on the momentums,
it becomes (see below as well)

K0(Q1f ,Q2f , tf ;Q1i ,Q2i , ti) =
(

1

2π iε

)N+1 ∫ N∏
n=1

[dQ1n dQ2n] exp[iS(N)]. (35a)

Then under the transformations (34a)–(34c) the time step becomes σn = ε
ρ(tn)ρ(tn−1)

, where
we have symmetrized the expression in order to avoid any preference of the one time over the
other. So we conclude that the path differential measure takes the form(

1

2π iε

)N+1 N∏
n=1

[dQ1n dQ2n]

=
(

1

2π iε

) (N+1)

2
N+1∏
n=1

(
1

2π iσnρ(tn)ρ(tn−1)

) 1
2

N∏
n=1

[ρn(tn) dX1n dQ2n]

= 1

(ρf ρi)
1
2

(
1

2π iε

) (N+1)

2
N+1∏
n=1

(
1

2π iσn

) 1
2

N∏
n=1

[dX1n dQ2n], (35b)

and the discretized action appearing in equation (35a) is

S(N) =
N+1∑
n=1

[
(Q1n−Q1n−1)

2

2ε
+ (Q2n−Q2n−1)

2

2ε
− ε

(
1
2�2

2(tn)Q
2
2n − F2(tn)Q2n

)
−ε

(
1
2�2

1(tn)Q
2
1n − F1(tn)Q1n

)
+ ε�(tn)Q1nQ

α
2n

]

11
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=
N+1∑
n=1

⎡
⎢⎢⎢⎢⎣

(Q2n−Q2n−1)
2

2σnρ(tn)ρ(tn−1)
− σnρ(tn)ρ(tn−1)

(
1
2�2

2(tn)Q
2
2n − F2(tn)Q2n

)
+ ρ̄(sn)X

2
n

2σnρ̄(sn−1)
+

ρ̄(sn−1)X
2
n−1

2σnρ̄(sn)
− XnXn−1

σn
− σn

(
1
2�2

1(sn)ρ̄(sn−1)ρ̄
3(sn)X

2
n

−F1(sn)ρ̄(sn−1)ρ̄
2(sn)Xn

)
+ σn�(sn)ρ̄(sn−1)ρ̄

2(sn)XnQ
α
2n

⎤
⎥⎥⎥⎥⎦. (35c)

Therefore on using the expansions ρ̄(s)

ρ̄(s±σ)
= 1 ∓ ˙̄ρ(s)

ρ̄(s)
σ +

( ˙̄ρ2
(s)

ρ̄2(s)
− ¨̄ρ(s)

2ρ̄(s)

)
σ 2 + O(σ 3) we find

that the propagator K0(Q1f ,Q2f , tf ;Q1i ,Q2i , ti) is related to the transformed one as

K0(Q1f ,Q2f , tf ;Q1i ,Q2i , ti)

= 1

(ρf ρi)
1
2

exp

{
i

2

( ˙̄ρf

ρf

X2
f − ˙̄ρi

ρi

X2
i

)}
K0(X1f ,Q2f , sf ;X1i ,Q2i , si), (35d)

where on switching to a phase-space path integral we have

K0(X1f ,Q2f , sf ;X1i ,Q2i , si) =
∫ ∫

DQ2
DP2

2π
DX

D P

2π

× exp

{
i
∫ sf

si

ds

[
ρ2(t)

[
P2Q̇2 −

(
P 2

2

2
+

1

2
�2

2(t)Q
2
2 − F2(t)Q2

)]

+ PẊ −
(

P 2

2
+

1

2

(
�̃2 + �̄2

1(s)ρ̄
4) X2 − F̄ (s)ρ̄3X

) ]}
. (36)

Moreover t = t (s),

�̃2 =
[

¨̄ρ

ρ̄
− 2

(
˙̄ρ

ρ̄

)2
]

= ρ3ρ̈, (37)

and we have used the notations

ρ = ρ̄(s) = ρ(t) (38a)

ρ̇ = dρ

dt
(38b)

˙̄ρ = dρ̄

ds
(38c)

�2
1(t) = �̄2

1(s) (38d)

F̄ (s) = F(t) = F1(t) + �(t)Qα
2 . (38e)

Now we impose a constrain on ρ by setting the global time-dependent frequency multiplying
X2 in equation (36) equal to a constant

�̃2 + �̄2
1(s)ρ̄

4 = ω2
0 = const. (39)

Therefore the integration with respect to the (X, P ) variables corresponds to a forced harmonic
oscillator with constant frequency. We find the propagator

K0(Q1f ,Q2f , tf ;Q1i ,Q2i , ti)

=
∫

DQ2
DP2

2π
h(Q2(t), t;Q1f , tf ;Q1i , ti)

× exp

{
i
∫ tf

ti

dt

[
P2Q̇2 −

(
P 2

2

2
+

1

2
�2

2(t)Q
2
2 − F2(t)Q2

)]}
, (40)

12
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where

h(Q2(t), t;Q1f , tf ;Q1i , ti) =
√

ω0

2π iρf ρi sin ϕ(tf , ti)
exp

{
i

2

(
ρ̇f

ρf

Q2
1f − ρ̇i

ρi

Q2
1i

)}

× exp

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

iω0

2 sin ϕ
(
tf , ti

)
⎡
⎢⎢⎢⎣

(
Q2

1f

ρ2
f

+ Q2
1i

ρ2
i

)
cos ϕ(tf , ti) − 2Q1f Q1i

ρf ρi

+ 2
ω0

Q1f

ρf

∫ tf
ti

G(t) sin ϕ(t, ti) dt + 2
ω0

Q1i

ρi

∫ tf
ti

G(t) sin ϕ(tf , t) dt

− 2
ω2

0

∫ tf
ti

dt
∫ t

ti
dτG(t)G(τ) sin ϕ(tf , t) sin ϕ(τ, ti)

⎤
⎥⎥⎥⎦

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
(41)

G(t) =
(

F1(t) + �(t)Qα
2

)
ρ(t) (42)

ϕ(t ′′, t ′) = ω0

∫ t ′′

t ′

dt

ρ2(t)
, (43)

and ρ(t) is the solution of the differential equation

ρ̈ + �2
1(t)ρ = ω2

0

ρ3
. (44)

Now we are in the position to apply the theory of section 2. At first we consider N + 1 time
slices and further appropriate sampling functions for the position and the momentum which
in fact can be the squared measure of a corresponding wavefunction �2(Q2) = 〈Q2 |�2〉
for the configuration space and of its Fourier transform function �2(P2) = 〈P2 |�2〉 for the
momentum space (see the discussion below equation (4)). That wavefunction for instance
can be the ground state of a relevant harmonic oscillator and it does not appear in most final
results as it appears in just a phase term (see the discussion in section 4). Then if the G(t)

function given by equation (42) is real, as expected, the h function in equation (40) (compare
with equations (16a) and (16b)), which is given by equation (41), is bounded by unity up to a
constant (i.e. C = 1 and γ1 = 0 in the corresponding equation (27)) and therefore we are able
to apply expression (29b) and obtain

K0(Q1f ,Q2f , tf ;Q1i ,Q2i , ti) = exp

{
−i

∫ tf

ti

dt〈�2|P
2
2

2
+

1

2
�2

2(t)Q
2
2 − F2(t)Q2|�2〉

}

× δ(Q2f − Q2i )

√
ω0

2π iρf ρi sin ϕ(tf , ti)
exp

{
i

2

(
ρ̇f

ρf

Q2
1f − ρ̇i

ρi

Q2
1i

)}

× exp

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

iω0

2 sin ϕ(tf , ti)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
Q2

1f

ρ2
f

+ Q2
1i

ρ2
i

)
cos ϕ(tf , ti) − 2Q1f Q1i

ρf ρi

+ 2
ω0

Q1f

ρf

∫ tf
ti

(
F1(t) + �(t)Qα

2f

)
ρ(t) sin ϕ(t, ti) dt

+ 2
ω0

Q1i

ρi

∫ tf
ti

(
F1(t) + �(t)Qα

2f

)
ρ(t) sin ϕ(tf , t) dt

− 2
ω2

0

∫ tf
ti

dt
∫ t

ti
dτ

[(
F1(t) + �(t)Qα

2f

)(
F1(τ ) + �(τ)Qα

2f

)
×ρ(t)ρ(τ ) sin ϕ(tf , t) sin ϕ(τ, ti)

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(45)

We can obtain the final SSP K(x1f , x2f , tf ; x1i , x2i , ti) from the above expression by taking
into account equations (31a), (32b)–(32d) and (33).

So we have found the SSP of the very general Hamiltonian (30) under the only assumption
that we know a solution of equation (44) [12].

13
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Now we proceed towards a more specific application of the general expression (45). So
we assume the following specific form for the Hamiltonian (30):

H(t) = e−γ1t
p2

1

2m
+ eγ1t

(
1

2
mω2

1x
2
1 − x1mf1(t)

)

+ e−γ2t
p2

2

2m
+ eγ2t

(
1

2
mω2

2x
2
2 − x2mf2(t)

)
− λ(t)x1x2, (46)

where we have set α = 1. Then according to the above method we extract the following form
for the SSP:

K(x1f , x2f , t; x1i , x2i , 0)

= exp

{
−i

∫ t

0
dτ 〈�2| e−γ2τ

p2
2

2m
+ eγ2τ

(
1

2
mω2

2x
2
2 − x2mf2(τ )

)
|�2〉

}

× δ
(
eγ2t/2x2f − x2i

) √
mω1 eγ1t/2

2πi sin ω1t

× exp

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

im

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(− 1
2 γ1 + ω1 cot ω1t

)
eγ1t x2

1f +
(

1
2 γ1 + ω1 cot ω1t

)
x2

1i − 2ω1
sin ω1t

eγ1 t/2x1ix1f

+
2x1f

m sin ω1t
eγ1t/2

∫ t

0 dτ
(
mf1(τ ) + λ(τ) e−γ1τ x2f e

γ2(t−τ)

2

)
e

γ1τ

2 sin(ω1τ)+

2x1i

m sin ω1t

∫ t

0 dτ
(
mf1(τ ) + λ(τ) e−γ1τ x2f e

γ2(t−τ)

2

)
e

γ1τ

2 sin(ω1(t − τ)) − 1
2m2ω1

× ∫ t

0 dτ
∫ τ

0 dρ

⎡
⎣

(
mf1(τ ) + λ(τ) e−γ1τ x2f e

γ2(t−τ)

2

)(
mf1(ρ) + λ(ρ) e−γ1ρx2f e

γ2(t−ρ)

2

)
×eγ1(τ+ρ)/2 sin (ω1(t − τ)) sin(ω1ρ)

⎤
⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(47)

The above result can be applied to any standard calculation that involves propagators.

4. Conclusions

In conclusion, in the present paper, we have given a method which uses the central limit
theorem to manage the handling of path integral expressions. The extracted results correspond
to a completely new formalism and cannot be directly related to previous results. The power
of the present method is that it is capable of giving closed expressions even in the case of
systems totally coupled and interacting with the requirements, on the one hand to be able to
path integrate on the first of the two systems at least after an integral transform, and on the
other, conditions like equations (27) and (29a) to be valid. The second system can be of any
form and we just have to know one of its states relevant with the dynamical situation studied.
We further note that that state appears in just a phase and so in most cases including the
calculation of the geometric phase and the evaluation of phase-space representations, such as
the Wigner, Husimi, Glauber, Kirkwood ones, that state does not appear anywhere in the final
results and therefore we can obtain exact closed expressions.

As an application we have considered two coupled harmonic oscillators. We note that
Hamiltonians of the form (30) may appear after appropriate integral transforms of more
complex interactions in relevant path integrals expressions.

Concluding we think that the present paper’s method is tractable and adds new knowledge
in mathematical physics.
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